Bilangan irasional adalah bilangan riil yang tidak bisa dibagi (hasil baginya tidak pernah berhenti). Dalam hal ini, bilangan irasional tidak bisa dinyatakan sebagai a/b, dengan a dan b sebagai bilangan bulat dan b tidak sama dengan nol. Jadi bilangan irasional bukan merupakan bilangan rasional. Contoh yang paling populer dari bilangan irasional ini adalah bilangan π,  \sqrt2 , dan bilangan e.

Bilangan π sebetulnya tidak tepat, yaitu kurang lebih 3.14, tetapi

= 3,1415926535…. atau
= 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510…

Untuk bilangan  \sqrt2 :

= 1,4142135623730950488016887242096…. atau
= 1,41421 35623 73095 04880 16887 24209 69807 85696 71875 37694 80731 76679 73798..

dan untuk bilangan e:

= 2,7182818….

Sejarah

Menurut sejarah, penemu bilangan irasional adalah Hippasus dari Metapontum (ca. 500 SM). Sayangnya, penemuannya tersebut justru menyebabkan ia dihukum mati oleh Pythagoras karena dianggap penganut ajaran sesat.